Optimality conditions for nonsmooth interval-valued and multiobjective semi-infinite programming

نویسندگان

چکیده

We consider a nonsmooth semi-infinite interval-valued vector programming problem, where the objectives and constraint functions need not to be locally Lipschitz. Using Abadie’s qualification convexificators, we provide Karush–Kuhn–Tucker necessary optimality conditions by converting initial problem into bi-criteria optimization problem. Furthermore, establish sufficient under asymptotic convexity assumption.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General Scalar-Valued Gap Function for Nonsmooth Multiobjective Semi-Infinite Programming

For a nonsmooth multiobjective mathematical programming problem governed by infinitely many constraints‎, ‎we define a new gap function that generalizes the definitions of this concept in other articles‎. ‎Then‎, ‎we characterize the efficient‎, ‎weakly efficient‎, ‎and properly efficient solutions of the problem utilizing this new gap function‎. ‎Our results are based on $(Phi,rho)-$invexity‎,...

متن کامل

Necessary Optimality and Duality for Multiobjective Semi-infinite Programming

The aim of this paper is to deal with a class of multiobjective semi-infinite programming problem. For such problem, several necessary optimality conditions are established and proved using the powerful tool of K − subdifferential and the generalized convexity namely generalized uniform ( , , , ) K F d α ρ − − convexity. We also formulate the Wolf type dual models for the semi-infinite programm...

متن کامل

New optimality conditions for multiobjective fuzzy programming problems

In this paper we study fuzzy multiobjective optimization problems defined for $n$ variables.  Based on a new $p$-dimensional fuzzy stationary-point definition,  necessary  efficiency conditions are obtained.  And we prove that these conditions are also sufficient under new fuzzy generalized convexity notions. Furthermore, the results are obtained under general differentiability hypothesis.

متن کامل

Karush-Kuhn-Tuker Type Conditions for Optimality of Non-Smooth Multiobjective Semi-Infinite Programming

Abstract In this paper, for a nonsmooth semi-infinite multiobjective programming with locally Lipschitz data, some weak and strong Karush-KuhnTucker type optimality conditions are derived. The necessary conditions are proposed under a constraint qualification, and the sufficient conditions are explored under assumption of generalized invexity. All results are expressed in terms of Clarke subdif...

متن کامل

On strong KKT type sufficient optimality conditions for multiobjective semi-infinite programming problems with vanishing constraints

In this paper, we consider a nonsmooth multiobjective semi-infinite programming problem with vanishing constraints (MOSIPVC). We introduce stationary conditions for the MOSIPVCs and establish the strong Karush-Kuhn-Tucker type sufficient optimality conditions for the MOSIPVC under generalized convexity assumptions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rairo-operations Research

سال: 2021

ISSN: ['1290-3868', '0399-0559']

DOI: https://doi.org/10.1051/ro/2020066